A deep learning sequence model based on self-attention and convolution for wind power prediction
Chien-Liang Liu,
Tzu-Yu Chang,
Jie-Si Yang and
Kai-Bin Huang
Renewable Energy, 2023, vol. 219, issue P1
Abstract:
Renewable energy has garnered significant attention recently due to its sustainable nature and minimal environmental footprint. Among various sources, wind energy emerges as one of the most promising. However, its inherently unpredictable and irregular characteristics pose challenges to forecasting wind power generation. This study introduces a wind power prediction model that employs self-attention to capture long-range relationships and convolutional layers to understand the local temporal dynamics within time-series data. Unlike traditional deep learning sequence models, such as the recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU), our method adeptly integrates both global and local insights. We validate the model’s efficacy through experiments on three datasets. The results consistently show our model’s superior performance over alternative methods. Further, we conduct comprehensive experiments to analyze our proposed model.
Keywords: Renewable energy; Wind energy; Time series data; Self-attention; Convolutional neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123013149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013149
DOI: 10.1016/j.renene.2023.119399
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().