EconPapers    
Economics at your fingertips  
 

Transparent wood with heat shielding and high fire safety properties for energy saving applications

Xin Hu, Yingbo Zhang, Wei Cai, Yang Ming, Rujun Yu, Hongyu Yang, Nuruzzaman Noor and Bin Fei

Renewable Energy, 2023, vol. 219, issue P1

Abstract: Improving the energy efficiency of buildings is critical to achieving net-zero and addressing the global energy and climate crises. By adopting simple spin-coating, a solar-blocking coating (Cs0.33WO3) was prepared on transparent wood (TW). Meanwhile, a liquid and transparent flame retardant (BPDP) was employed to enhance its fire safety. The chemical composition, physical morphology, the thermal stability, and the fire safety of the resulting heat-shielding TW were analyzed using FTIR, XRD, SEM, TGA, and Cone, respectively. Field tests and simulations were conducted to evaluate the solar-blocking capacity and energy-saving potential of the heat-shielding. The char yield (CY) of heat-shielding TW was increased from 7.3 % to 17.1 % due to the catalytic carbonization effect of BPDP and inorganic coating. The heat-shielding TW demonstrated significant solar-blocking capabilities, with a 46.63 % reduction in solar transmission compared to the original TW. The interior surface temperature (Ts) of the heat-shielding TW model was 10.2 °C lower than that of normal glass, indicating its remarkable heat shielding performance. Energy-saving simulations based on experimental findings revealed that such heat-shielding TW achieved energy savings of 9.6 %, 7.7 %, and 6.2 % in Hong Kong, Shanghai, and Singapore, respectively, when compared to traditional glazing glass. Overall, the prepared heat-shielding TW shows promise as a novel candidate for window applications, offering improved energy efficiency.

Keywords: Transparent wood; Heat-shielding; Flame retardant; Energy saving; Sustainable materials (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123013411
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013411

DOI: 10.1016/j.renene.2023.119426

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013411