Enhanced H2 gas production from steam gasification of a winery waste through CO2 capture by waste concrete fines and use of alkali catalysts
D. Vamvuka,
J. Elmazaj and
M. Berkis
Renewable Energy, 2023, vol. 219, issue P1
Abstract:
This study focused on production of a high yield of hydrogen as a clean energy source from a winery waste, through steam gasification. The experiments were conducted in a fixed bed system and a thermal analysis-mass spectrometer unit. Quarry dust waste from cement industry was used to capture carbon dioxide emissions and alkali carbonates of K, Li and Na were used as catalysts. Based on the optimum conditions derived in a previous work, the effects of sorbent/biomass ratio, catalyst loading and temperature on conversion, gas composition and quality, cold gas efficiency and yield of high purity hydrogen were investigated. The amount of carbon dioxide captured up to 700 °C was 92–97 % and at 750 °C about 83 %. At Ca/C = 1 the molar fraction of hydrogen in the product gas was 74.8 %. Sodium carbonate exhibited a better overall catalytic activity at a loading of 20 % wt. In this case, hydrogen yield and concentration were 4.7 m3/kgchar and 95.9 %, respectively and char conversion 98.1 % on a dry ash-free basis. The proposed method was proved advantageous for high purity hydrogen gas production and environmental management of wastes.
Keywords: Winery wastes; Steam gasification; CO2 sorbent; Alkali catalysts (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123013435
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013435
DOI: 10.1016/j.renene.2023.119428
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().