Cooperative model predictive control for Wave Energy Converter arrays
Zhenquan Zhang,
Jian Qin,
Yuchen Zhang,
Shuting Huang,
Yanjun Liu and
Gang Xue
Renewable Energy, 2023, vol. 219, issue P1
Abstract:
It is well known that commercial Wave Energy Converters (WECs) are likely to be deployed in arrays, which gives the possibility to enhance the energy harvesting properties of the wave farm as a whole. Advanced control strategies are necessary to exploit the potential and capture as much energy as possible in a limited sea space. Centralized control is a natural benchmark, as it sees the array as a large-scale system, making energy maximization a large plantwide problem. However, centralized control has a high requirement for computational efficiency. In this paper, a cooperative model predictive control (MPC) is proposed to achieve energy maximization while reducing computational cost. A modified array model is constructed to capture the dynamics of interactions in arrays, explicitly showing the linear couplings in the system state, control input, and excitation force of each subsystem. Sensitivity analyses are performed to evaluate the performance for different array layouts, separation distances, and sea states. The results show that cooperative MPC can achieve an energy capture performance that approximates centralized MPC, outperforming decentralized MPC significantly, and is well adapted to sea states. Furthermore, the proposed method has the potential to improve computational efficiency by 14.86%–51.14% for simulations in the study.
Keywords: Wave energy; Wave Energy Converter; Point-absorber arrays; Power optimization; Cooperative model predictive control (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123013563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013563
DOI: 10.1016/j.renene.2023.119441
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().