Fast time-domain model for the preliminary design of a wave power farm
Charitini Stavropoulou,
Anders Goude,
Eirini Katsidoniotaki and
Malin Göteman
Renewable Energy, 2023, vol. 219, issue P2
Abstract:
This study presents a novel, fast time-domain model developed for an array of interacting point-absorber wave energy converters. The model is validated using experimental wave tank data. The point-absorbers, based on Uppsala University’s design, are arranged in a symmetric grid and interact with scattered and radiated waves while constrained to the heave motion. The model employs linear potential flow theory to solve the hydrodynamic coefficients in the frequency domain and employs Cummins’ formulation to solve the equations of motion in the time domain. Modeling an array of wave energy converters in the time domain yields a system of integro-differential equations, featuring convolution terms in the excitation and radiation forces. This implies that past waves radiated by the body continue to impact future dynamics. Irregular long-crested waves, generated from the Bretschneider spectrum, serve as the incident waves for the study. The model’s accuracy in capturing the dynamics and power absorption of the farm is demonstrated through validation against experimental data from a 1:10 scaled prototype of a six-point-absorber array. Despite inherent differences between the experimental and numerical set-ups, the model accurately represents the farm’s behavior. Furthermore, an efficiency test reveals that the numerical scheme approximates the performance of wave power farms comprising 6, 12, 24, 48, and 96 interacting devices within a maximum computational time of 20 s. Overall, this research presents a novel and accurate time-domain model for analyzing an array of point-absorber wave energy converters. The model’s ability to capture the dynamics and power absorption, along with its efficiency in simulating larger wave power farms, make it a valuable tool for the preliminary design stage.
Keywords: Wave power farm; Array; Point-absorber; Time-domain model; Fast numerical model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123013976
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123013976
DOI: 10.1016/j.renene.2023.119482
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().