A-site deficient La1-xCr0.95Ru0.05O3-δ perovskites for N-hexadecane steam reforming: Effect of steam activation and active oxygen
Qunwei Guo,
Jiaqi Geng,
Jiawen Pan,
Bo Chi,
Chunyan Xiong and
Jian Pu
Renewable Energy, 2023, vol. 219, issue P2
Abstract:
Liquid fuels like diesel, biodiesel, and alcohols can be utilized for onboard hydrogen production in auxiliary power systems by steam reforming, in which hydrogen productivity and carbon deposition are key issues. A-site deficient La1-xCr0.95Ru0.05O3 catalysts are prepared using the Glycine-nitrate method and characterized by multiple techniques. The catalyst with 20 % A-site deficiency exhibits about 95 % fuel conversion and stable performance over a 100 h continuous test at 750 °C and a steam/carbon ratio of 3.0 using n-hexadecane. However, the catalyst with a 10 % deficiency shows fluctuating fuel conversion with higher ethylene and ethane contents. Catalyst performance is mainly determined by active oxygen. The activation of steam on oxygen vacancies and Cr ions with variable valences could produce surface-free oxygen and freely migrating lattice oxygen respectively, which can react with CHx intermediates to form CO and H2.
Keywords: Steam reforming; Liquid fuels; A-site deficiency; Steam activation; Active oxygen (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123014106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014106
DOI: 10.1016/j.renene.2023.119495
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().