EconPapers    
Economics at your fingertips  
 

Effect of drying air supply temperature and internal heat exchanger on performance of a novel closed-loop transcritical CO2 air source heat pump drying system

Yaxiang Hou, Weidong Wu, Zhenbo Li, Xinyi Yu and Tao Zeng

Renewable Energy, 2023, vol. 219, issue P2

Abstract: A novel closed-loop transcritical CO2 air-source heat pump drying (HPD) system with a relatively simple structure, higher drying temperature, and internal heat exchanger (IHX) for the drying of medical equipment was proposed and built. With or without the IHX in the system, the effects of different drying air supply temperatures on the performance of transcritical CO2 HPD system were studied experimentally. The results showed that the maximum drying air supply temperature (DAST) in the designed system could reach 72.9 °C. As the DAST raised, whether with or without the IHX in the system, the coefficient of heating performance (COPh), coefficient of system performance (COPsys), and specific moisture extraction rate (SMER) decreased gradually and moisture extraction rate (MER) increased continuously. When the DAST was 70 °C, COPh, COPsys, MER and SMER were respectively 3.68, 6.07, 3.27 kg/h and 1.68 kg/(kW·h) in the HPD system without the IHX, and were respectively 4.00, 6.89, 3.67 kg/h and 1.97 kg/(kW·h) in the HPD system with the IHX. In contrast, the compressor discharge pressure decreased 4.26 %–5.99 %, COPh increased 1.39 %–8.65 %, COPsys increased 1.89 %–13.57 %, MER increased 4.68 %–14.01 %, SMER increased 6.93 %–17.18 % in the HPD system with the IHX.

Keywords: Transcritical CO2 air source heat pump; Internal heat exchanger; Drying air supply temperature; Coefficient of performance; Specific moisture extraction rate (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123014313
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014313

DOI: 10.1016/j.renene.2023.119516

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014313