Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion
Yixuan Zhou,
Xianbo Su,
Weizhong Zhao,
Lufei Wang and
Haijiao Fu
Renewable Energy, 2023, vol. 219, issue P2
Abstract:
The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.
Keywords: Coal biomethanation; Anaerobic digestion; Microbial electrolytic cell; Graphene; Direct interspecific electron transfer (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123014428
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014428
DOI: 10.1016/j.renene.2023.119527
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().