EconPapers    
Economics at your fingertips  
 

Charging/discharging performance and corrosion behavior of a novel latent heat thermal energy storage device with different fin plate materials

Feng Jiang, Hang Wang, Yige Hu, Xiang Ling and Tongtong Zhang

Renewable Energy, 2024, vol. 220, issue C

Abstract: The use of low-grade industrial waste heat for building heating could facilitate the decarbonization of heat sector, which accounts for a large share of energy consumption worldwide. However, the uncontrollable fluctuation characteristics of heat source and mismatch between energy supply and demand greatly limit its large-scale application. Notably, latent heat thermal energy storage (LHTES) technology, showing remarkable advantages in terms of energy storage density, heat storage temperature (nearly constant), technology maturity and cost, could effectively solve the above problem. Hence, this work specially focused on LHTES device that utilized fin plate for improving performance of heat harvesting and reuse. Furthermore, charging/discharging performance and corrosion behavior of a novel device with different fin plate materials (brass, aluminum and stainless steel) were investigated. Results showed that temperature difference between plate surface and melting point above 10 °C effectively shortened charging time more than 45.7 %. A higher thermal conductivity of fin material contributed to a better thermal performance. Aluminum and stainless steel preferred to be used as fin plate materials of targeted hydrated salt owing to their low corrosion rate of 0.016 and 0.002 mg/(cm2·yr), respectively. This work was expected to provide a guidance on designing a LHTES device applied in building heating.

Keywords: Thermal energy storage device; Charging/discharging performance; Corrosion behavior; Fin plate; Hydrated salt (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123014994
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014994

DOI: 10.1016/j.renene.2023.119584

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014994