A Toolbox for generalized pumped storage power station based on terrain in ArcGIS Environment
Yunli Song,
Hailong He,
Yunji Yan,
Linbo Zhai,
Jiaqi Yao and
Baiyu Wu
Renewable Energy, 2024, vol. 220, issue C
Abstract:
China proposed the goal of carbon peak by 2030 and carbon neutrality by 2060 at the 75th session of the United Nations General Assembly. Accelerating the development of clean energy is the key to achieve this carbon peak and neutrality goal. However, large-scale grid connection of new energy brings great challenges to the stable and safe operation of power grid. As a regulating power source and energy storage power source, pumped hydro energy storage (PHES) has strong regulating ability and is characterized as a reliable operation with broad prospects for development. However, the current field-survey-based method of site selection for PHES is time consuming, labour intensive, and costly. Improper site selection would cause ecological environment damages among other problems. A scheme or protocol that enables the automated site selection of PHES is therefore urgently required. The objective of this study was therefore to develop a new tool based on digital elevation model (DEM) and geographic information system (GIS) hydrological analysis function to screen out the potential PHES sites. ArcGIS, as a leading geospatial software, provides a set of geoprocessing (GP) tools for raster analysis. ArcPy is a Python package that runs in the ArcGIS environment. It can quickly invoke existing tools in ArcGIS to create custom extension modules. In this study, ArcPy was used to screen the site of PHES based on reservoir capacity and dam height, etc. Taking the southern Shaanxi Province, China as an example, comprehensive evaluation method integrating objective weighting method and multi-factor statistical analysis method is proposed and tested. This new method can promote the solution of the PHES site selection planning and preliminary reserve of PHES, and provide scientific reference and theoretical basis for the development and construction of PHES.
Keywords: Digital elevation model; Geographic information system; Carbon neutral; Carbon peak; Pumped hydro energy storage; Comprehensive evaluation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123015057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015057
DOI: 10.1016/j.renene.2023.119590
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().