Performance of energy piles foundation in hot-dominated climate: A case study in Dubai
Sofie ten Bosch,
Elena Ravera and
Lyesse Laloui
Renewable Energy, 2024, vol. 220, issue C
Abstract:
Energy piles represent an innovative technology that can help provide sustainable geothermal heating or cooling energy for thermal conditioning purposes. In hot-dominated climates, the interest is to inject heat in the ground and extract energy for space-cooling purposes. This study evaluates the feasibility of energy piles in these regions through three-dimensional numerical modelling. The modelling framework is validated against a published experiment and is able to sufficiently capture the development of outlet temperature over time. The numerical analysis is then used to evaluate a case study in Dubai where it is targeted to provide 40 % of the cooling demand of a typical building. The unbalanced energy demand causes an increase in the outlet temperature of the heat carrier fluid and the radial temperature over time. However, observation of long-term behaviour indicates that the temperature increase is most significant in the initial years and gradually stabilizes over time. This stabilization enables to respect the outlet temperature limitation of the heat pump over 50 years. A sensitivity analysis confirms these observations with respect to system dimensioning variables. The obtained results highlight the effectiveness of energy piles to decarbonize energy supply in buildings in hot-dominated climates via the use of renewable energy sources.
Keywords: Energy geostructures; Numerical modelling; Hot-dominated climates; Cooling systems; Geothermal energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123015471
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015471
DOI: 10.1016/j.renene.2023.119632
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().