Experimental study of the change of pore structure and strength of granite after fluid-rock interaction in CO2-EGS
Biao Shu,
Junjie Chen and
Hui Xue
Renewable Energy, 2024, vol. 220, issue C
Abstract:
Deep geothermal energy plays an essential role in the future renewable energy supply. To investigate the mechanism of fluid-rock interaction on the pore structure and the strength of granite in various zones of CO2-EGS, this paper carried out experiments on the fluid-rock interaction at 240 °C and 37 MPa for the three zones of CO2-EGS. Experiments were conducted to test and analyze the elemental composition, surface micromorphology, pore structure, P-wave velocity, and mechanical strength of the granite before and after the fluid-rock interaction. The results show that the water/ScCO2 dissolves the albite and potassium feldspar in the granite, and the carbon in ScCO2 may be sequestered in rock as carbonate mineral precipitates. The injection of ScCO2 fluids increases the pore volume of the rock by 43%, 65%, and 45% in the presence of no water, a small amount of water, and a large amount of water, respectively. There is no chemical reaction, but only physical interaction, between ScCO2 and granite when no water is involved in the core zone of CO2-EGS. The dissolution and precipitation are slight when there is limited water in the rock of surrounding zone, and the P-wave velocity and uniaxial compressive strength also only decrease by ignorable amounts. Only with sufficient water in the outer zone, the ScCO2 fluid can significantly change the uniaxial compressive strength and elastic modulus of rock sample. The findings indicate that the CO2-EGS won't suffer from the blockage of mineral precipitation, decrease of permeability and short service lifetime of geothermal reservoir, which are big problems in conventional water based EGS.
Keywords: Supercritical carbon dioxide based enhanced geothermal system; Granite; Fluid-rock interaction; Pore structure; Uniaxial compressive strength (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123015501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015501
DOI: 10.1016/j.renene.2023.119635
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().