A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate
Yelin Zhang,
Chi Yan Tso,
Chung Fai Norman Tse,
Alan Ming-Lun Fong,
Kaixin Lin and
Yongjun Sun
Renewable Energy, 2024, vol. 220, issue C
Abstract:
Radiative sky coolers (RSCs) can reduce building roof heat gains by radiating heat to outer space. However, their performance during daytime is limited, with substantial roof heat gains still occurring due to high ambient temperatures. Additionally, much of the cooling produced at night is wasted since air conditioners in non-residential buildings are often not operating. To address these limitations, we propose a novel thermal storage-heat pipe-integrated radiative sky cooler system (TS-HP-RSC). It utilizes water thermal storage to capture nighttime sky cooling for use during the day. A gravity-assisted heat pipe unidirectionally transports this stored cooling to the indoor space, preventing losses to the environment. An experimental platform is established integrating the proposed system, a baseline case, and measurement instrumentation. Compared to the baseline, the TS-HP-RSC system not only eliminated daytime cumulative heat gains (0.55–1.27 kJ) but also provided supplemental cooling (1.57–2.75 kJ). This yielded substantial daytime heat gain reductions of 223.62 %–600 % versus the baseline. Similar reductions occurred in peak heat gains. By enhancing daytime cooling, the TS-HP-RSC system can substantially curb roof heat gains in subtropical climates, enabling significant energy savings.
Keywords: Radiative sky cooling; Gravity-assisted heat pipe; Thermal storage; Daytime cooling; Roof heat gain (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123016014
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016014
DOI: 10.1016/j.renene.2023.119686
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().