Flow through horizontal axis propeller turbines in a triangular array
Rafael C.F. Mendes,
Benoit Chapui,
Taygoara F. Oliveira,
Ricardo Noguera and
Antonio C.P. Brasil
Renewable Energy, 2024, vol. 220, issue C
Abstract:
When two horizontal rotors are put side-by-side, with slight gaps between them (less than two diameters), the flow velocity near the centerline is higher than the free stream. In this paper, we employ experimental and computational methods to examine the turbulent wake flow of a single turbine, the interactions between two side-by-side rotors, and the power output of a turbine inside a triangular arrangement (with two rotors upstream and one downstream). The experiments are carried out in a wind tunnel using 1:10 scale models. The wake flow is characterized by applying the hot-wire anemometer. Numerical simulations are employed to characterize a single turbine’s near-wake flow and guide side-by-side rotor investigations. The results demonstrate that more power can be converted by a group of three horizontal axis turbines arranged in a triangular frame than by three separate turbines. We show that the RANS turbulence model accurately computes mean velocity but not Turbulence Intensity (TI). We propose a new URANS post-processing approach that improves TI calculations at the wake region. Our findings suggest that wind, tidal current, and hydrokinetic farms may be able to convert more power adopting triangular arrays than they can in standard aligned or staggered row designs.
Keywords: Horizontal axis turbines; Turbines arrangement; Wind tunnel; Turbulence; Computational fluid dynamics; Renewable energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123016671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016671
DOI: 10.1016/j.renene.2023.119752
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().