EconPapers    
Economics at your fingertips  
 

Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage

Wei Chen, Haoxuan Qin, Qing Zhu, Jianshu Bai, Ningning Xie, Yazhou Wang, Tong Zhang and Xiaodai Xue

Renewable Energy, 2024, vol. 221, issue C

Abstract: A power operation mode of constant volume discharging process for advanced adiabatic compressed air energy storage (AA-CAES), called compensation mode (C mode), is proposed. The dynamic model of the proposed C mode discharging process is established based on the conservations of mass, momentum, and energy. The reliabilities of compressor, air tank, and air turbine are verified separately. The optimal design is carried out to reduce the power consumed by the compressor. The optimal design pressure ratio and reduced flow rate are 2.48 and 9.292 × 10−5 m·s·K0.5, respectively. This finding proves that the proposed dynamic model obeys the first and second laws of thermodynamics. The exergy distribution of the entire discharging process is studied. Results show that the two largest exergy losses occur in MT and MR. The performance of the proposed C mode is compared with that of the two other operation modes. The proposed C mode enhances the energy storage efficiency of the AA-CAES system by 14.71 %. This study provides a relatively efficient and feasible technical solution for the constant power operation of AA-CAES.

Keywords: AA-CAES; Dynamic modeling; Constant power operation mode; Optimal design; Performance assessment (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123016439
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016439

DOI: 10.1016/j.renene.2023.119728

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016439