Improving the prediction of extreme wind speed events with generative data augmentation techniques
M. Vega-Bayo,
J. Pérez-Aracil,
L. Prieto-Godino and
S. Salcedo-Sanz
Renewable Energy, 2024, vol. 221, issue C
Abstract:
Extreme Wind Speed events (EWS) are responsible for the worst damages caused by wind in wind farms. An accurate estimation of the frequency and intensity of EWS is essential to avoid wind turbine damage and to minimize cut-out events in these facilities. In this paper we discuss how generative Data Augmentation (DA) techniques improve the performance of Machine Learning (ML) and Deep Learning (DL) algorithms in EWS prediction problems. These problems are usually tackled as classification tasks, which are highly unbalanced due to the small number of EWS events in wind farms. Different versions of Variational AutoEncoders (VAE) are proposed and analysed in this work (VAEs, Conditional VAEs (CVAEs) and Class-Informed VAEs (CI-VAE)) as generative DA techniques to balance the data in EWS problems, leading to better performance of the prediction systems. The proposed generative DA techniques have been compared against traditional DA algorithms in a real problem of EWS prediction in Spain, considering ERA5 reanalysis data as predictive variables. The results showed that the CI-VAE with a Convolutional Neural Network approach obtained the best results, with values of Precision 0.62, Recall 0.74 and F1 score 0.67, improving up to 4% the results of the method without data augmentation techniques.
Keywords: Extreme wind speed; Prediction systems; Machine learning; Variational autoencoders; Data augmentation techniques (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123016841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016841
DOI: 10.1016/j.renene.2023.119769
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().