Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light
D.T. Cotfas,
A. Enesca and
P.A. Cotfas
Renewable Energy, 2024, vol. 221, issue C
Abstract:
The solar thermoelectric generator is undoubtedly an important candidate to convert solar into electric energy. The current efficiency of the thermoelectric generator is low, but recent research indicates an improvement in efficiency. The paper presents a method that leads to performance enhancement of the solar thermoelectric generator. An absorbent layer comprising of metallic oxides and additives was deposited by the spray deposition technique on the hot side of the solar thermoelectric generator to increase irradiance absorption. The main properties of the absorbent layer consist of an optimized IR absorption, good thermal transmission to the contact material, and thermal resistance. The absorbent layer deposited on the hot side of the STEG has low thermal emittance 0.073, high absorbance 0.98 and high stability, which makes it a very good candidate for use as an absorbent layer for improving the performance of the STEG. The new solar thermoelectric generator is studied in two environmental situations: artificial light in the lab, from 600 W/m2 to 1200 W/m2 and in concentrated light from 20 suns to 80 suns. Analysis of the results obtained shows an increase in power generation more than 25 % for the irradiance around 1 sun and up to 82 % for the concentration light.
Keywords: Solar thermoelectric generator; Performance; Solar light; Absorbent layers (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123017469
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017469
DOI: 10.1016/j.renene.2023.119831
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().