EconPapers    
Economics at your fingertips  
 

Comprehensive data-driven methods for estimating the thermal conductivity of biodiesels and their blends with alcohols and fossil diesels

Mohammad Amin Moradkhani, Seyyed Hossein Hosseini, Mengjie Song and Khalil Teimoori

Renewable Energy, 2024, vol. 221, issue C

Abstract: Biodiesels offer viable alternatives to fossil diesels as renewable and clean energy sources. Understanding the thermal conductivity of biodiesels is crucial for engine design and heat transfer rate calculations in thermal systems. However, existing literature lacks validated predictive tools for this property. To address this, a study utilized 2552 data points from 18 published studies with uncertainties less than 2 %, covering 26 fatty acid alkyl ester biodiesels, 12 biodiesel-alcohol mixtures, and 9 biodiesel-fossil diesel blends across various pressure and temperature conditions. Three machine learning algorithms were employed, using input variables of reduced temperature, reduced pressure, and average molecular weight. Models were trained on 80 % of the data and evaluated on the remaining 20 %. Statistical error metrics and graphical analysis confirmed high precision in predicting biodiesel thermal conductivity. The Gaussian Process Regression model showed the best consistency, with an average absolute relative error (AARE) of 0.36 % and determination coefficient (R2) of 99.69 % on the testing dataset. These models were versatile, applicable to different biodiesel mixtures, accurately capturing thermal conductivity behavior under diverse operating conditions. In contrast, existing literature correlations were limited to specific conditions and required complex calculations. Additionally, a sensitivity analysis determined the relative importance of factors influencing thermal conductivity.

Keywords: Biodiesel fuels; Thermal conductivity; Intelligent approaches; Modeling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123017640
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017640

DOI: 10.1016/j.renene.2023.119849

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017640