EconPapers    
Economics at your fingertips  
 

Semiconductor-assisted photofermentation system for terephthalic acid degradation and methane production

Heng Li, Lingfen Ye, Yixin Li, Liang Zhou, Tong Ouyang, Dong Xia and Yuanpeng Wang

Renewable Energy, 2024, vol. 221, issue C

Abstract: The fermentation degradation approach of purified terephthalic acid wastewater remains a grand challenge, due to the low degradation efficiency of the refractory terephthalic acid (TA) compound. Here, photocatalytic semiconductors (g-C3N4 and its-derived composites) are introduced to the anaerobic reactor to construct a semiconductor-assisted photofermentation system that enables to intensify the electron transfer process, in turn enhancing the overall TA degradation performances. Specifically, the g–C3N4–added group exhibits significantly improved methane production efficiency and TA degradation rate, increasing by 67.7 % and 36.1 %, respectively. Mechanisms reveal that such enhanced TA degradation is contributed from the key direct-interspecies-electron-transfer (DIET) process (that is intensified by the produced photogenic electrons) and the photocatalytic degradation process (that is amplified by the generated photogenic holes and hydroxyl radicals capable of efficiently oxidizing TA to simple organic matters). This study underscores the importance and high-efficiency of simply constructing semiconductor-assisted photofermentation systems for TA wastewater treatments, which can be implemented to harness other types of recalcitrant compounds-contained wastewaters.

Keywords: Photofermentation; g-C3N4; Terephthalic acid; Direct interspecies electron transfer; Methane production (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123017676
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017676

DOI: 10.1016/j.renene.2023.119852

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017676