EconPapers    
Economics at your fingertips  
 

An extended k−ɛ model for wake-flow simulation of wind farms

Navid Zehtabiyan-Rezaie and Mahdi Abkar

Renewable Energy, 2024, vol. 222, issue C

Abstract: The Reynolds-averaged Navier–Stokes approach coupled with the standard k−ɛ model is widely utilized for wind-energy applications. However, it has been shown that the standard k−ɛ model overestimates the turbulence intensity in the wake region and, consequently, overpredicts the power output of the waked turbines. This study focuses on the development of an extended k−ɛ model by incorporating an additional term in the turbulent kinetic energy equation. This term accounts for the influence of turbine-induced forces, and its formulation is derived through an analytical approach. To assess the effectiveness of the proposed model, we begin by analyzing the evolution of normalized velocity deficit and turbulence intensity in the wake region, and the normalized power of the waked turbines. This investigation involves a comparison of the predictions against results from large-eddy simulations in three validation cases with different layouts. We then simulate a wind farm consisting of 30 wind turbines and conduct a comparative analysis between the model-predicted normalized streamwise velocity and wind-tunnel measurements. Finally, to conclude our assessment of the proposed model, we apply it to the operational wind farm of Horns Rev 1 and evaluate the obtained normalized power with the results from large-eddy simulations. The comparisons and validations conducted in this study prove the superior performance of the extended k−ɛ model compared to the standard version.

Keywords: Wind-farm modeling; Turbine wakes; Power losses; Turbulence modeling; Reynolds-averaged simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123018190
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018190

DOI: 10.1016/j.renene.2023.119904

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018190