EconPapers    
Economics at your fingertips  
 

Physicochemical synergistic effect of microwave-assisted Co-pyrolysis of biomass and waste plastics by thermal degradation, thermodynamics, numerical simulation, kinetics, and products analysis

Yujun Ma, Wenliang Wang, Hui Miao, Sizhe Han, Yishuai Fu, Yutong Chen and Jiaqi Hao

Renewable Energy, 2024, vol. 223, issue C

Abstract: Understanding the physicochemical synergistic effect of microwave-assisted co-pyrolysis (MACP) of biomass and waste plastics is crucial for efficient conversion and improving the quality of bio-oil. Thermal degradation, thermodynamics, and numerical simulation of co-pyrolysis of the corncob (CC) and polystyrene (PS) were conducted. Results showed that the co-pyrolysis of CC and PS had a positive physical synergistic and compatible effect in reducing energy consumption and accelerating reaction rate. The reaction kinetics analysis and pyrolysis products analysis found that the co-pyrolysis of CC and PS had a positive chemical synergistic effect. The co-pyrolysis both effectively reduced the pyrolysis activation energy and improved the yield and quality of bio-oil. Significantly, the sample of CC/PS (1:2) had the highest yield of bio-oil (52.3 wt%) and the highest relative content of aromatics (95.0 area%) in co-pyrolysis, while 450 °C was the most ideal pyrolysis temperature. This work indicated that the MACP of CC and PS showed a positive physicochemical synergistic effect, and provided theories and approaches for the production of bio-oil from the biomass and waste plastics by MACP.

Keywords: Co-pyrolysis; Biomass; Polystyrene; Thermal behavior; Numerical simulation; Physicochemical synergistic effect (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124000910
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:223:y:2024:i:c:s0960148124000910

DOI: 10.1016/j.renene.2024.120026

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:223:y:2024:i:c:s0960148124000910