EconPapers    
Economics at your fingertips  
 

Anisotropically layered 2D-3D biocarbon-carbon functionality in sustainable high-performance composite for bipolar plates in fuel cell

Nazmus Saadat, Otavio Titton Dias, Shaffiq Jaffer, Jimi Tjong, Kristiina Oksman and Mohini Sain

Renewable Energy, 2024, vol. 224, issue C

Abstract: of novel functional materials to improve the performance of hydrogen-based powertrain component is highly demanding for renewable energy source in the transportation sector. In this research work, novel and highly conductive carbonaceous biomaterials were introduced as an alternative to non-renewable and cost-prohibitive nanoparticles to improve conductivity along with enhanced flexural strength for fuel cell's bipolar plates. Different physical and chemical changes in molecular and lattice structure during carbonization were analyzed with the help of advanced characterization process. Biocarbons from different renewable sources such as lignin, softwood and hardwood species led to the potential use of waste biomass in high-end functional bipolar plate composite for fuel cell application. A turbostratic-to-graphitic conversion phenomenon including condensed aromatic CC bond formation, transformation of aliphatic to aromatic components, release of free radicals, occurring lattice imperfections as well as increasing sp2 electron configuration helps to achieve improved composite attributes. This graphitic biocarbon derived polymer composites exceeds the US DOE criteria for hydrogen fuel cell bipolar plates with electrical conductivity of 202 S/cm and flexural strength up to 52 MPa. This pioneering design combined with unique interfacial characteristics of graphitic biocarbon in polymer phase shows a huge potential for fuel cell bipolar plates imparting multifunctional characteristics.

Keywords: Biocarbon; Fuel cell; Sustainable conductive composite; Renewable energy materials; Bipolar plate; Carbon polymer composite (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124002209
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002209

DOI: 10.1016/j.renene.2024.120155

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002209