Interface engineering of BiVO4/Zn3V2O8 heterocatalysts for escalating the synergism: Impact of Cu electron mediator for overall water splitting
Muhammad Zeeshan Abid,
Khezina Rafiq,
Abdul Rauf,
Raed H. Althomali,
Rongchao Jin and
Ejaz Hussain
Renewable Energy, 2024, vol. 225, issue C
Abstract:
The risk of global warming is increasing due to excessive consumption of fossil fuels. To fill the gap between production and consumption of conventional energy sources, modern societies are searching green and renewable alternatives. In this work, BiVO4/Zn3V2O8 heterocatalysts were synthesized and interfacially engineered for overall water splitting reactions. To obtain the structural and interfacial morphologies, catalysts were characterized by XRD, FTIR, Raman spectroscopy, SEM and AFM techniques. The optical and chemical characteristics of as-synthesized catalysts were evaluated using UV–Vis/DRS, PL, EIS, EDX, XPS and BET analysis. The role of Cu metal, synergism between BiVO4/Zn3V2O8 and mechanistic approaches were further revealed. The results depict that Cu metal exceptionally compete to sustain the synergism as an electron mediator source. The synergistic effect and electron mediator were found as key factors to boost the overall water splitting efficiencies. Due to interfacial engineering of BiVO4/Zn3V2O8 system, charge transfer becomes more feasible for the redox reactions (i.e. water splitting). It was examined that due to presence of Cu metal, rate of overall water splitting reaction was higher than the catalysts having no mediator (i.e. absence of Cu). During photoreaction, two successive rates for H2 and O2 evolution were speculated 17.66 and 8.96 mmol g−1 h−1, respectively which delivers approximately 5.04 kJ g−1 h−1 energy. On the basis of results and activities, it could be concluded that, this research will exhibit exceptional potential and hold promise of an ultimate transition to the water splitting and green energy technologies.
Keywords: Interface engineering; Electron mediator; Synergism; Overall water splitting; Renewable energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400288X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:225:y:2024:i:c:s096014812400288x
DOI: 10.1016/j.renene.2024.120223
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().