Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics
Deli Zhang,
Zhijing Sun,
Hongyue Fu,
Zhenfei Liu,
Fang Wang,
Jianfei Zeng and
Weiming Yi
Renewable Energy, 2024, vol. 225, issue C
Abstract:
The rational thermochemical conversion of livestock manure holds significant implications for the recovery and utilization of wastes. In this study, cow manure (CM) was treated by hydrothermal carbonization (HTC) to evaluate the fuel properties, combustion behavior and kinetics of hydrochars. The results showed that HTC increased the carbon content of CM from 37.02% to 43.68% and the H/C and O/C ratios comparable to lignite. The oxygen-containing functional groups of hydrochars decreased and displayed typical deposition micromorphology of secondary char. For aqueous phase, furans and phenols were enriched at 200 °C and 260 °C respectively, which were the main precursor or/and components of secondary char. The thermogravimetric analysis displayed hydrochars combustion were more stable and lasting. The secondary char reduced ignition temperature, but limited impact on volatilization during combustion. Compared with CM, hydrochars showed lower activation energy in initial combustion, and higher at high conversions (except for CM260). The relative lower activation energy of CM260 was mainly attribute to the loose ash structure. Besides, HTC could alleviate slagging/fouling of CM combustion and high temperature strengthened the effect. These results indicate that HTC is a promising approach to treat CM for solid fuels, and 240 °C is suggested to upgrading the characteristics.
Keywords: Cow manure; Hydrothermal carbonization; Hydrochar; Fuel property; Combustion behavior (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124003343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003343
DOI: 10.1016/j.renene.2024.120269
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().