EconPapers    
Economics at your fingertips  
 

Advantages of dual CO2 & O2 adsorption model for assessment of micropore development in biochar during two-stage gasification

Agnieszka Korus, Jacek Jagiello, Claus Dalsgaard Jensen, Zsuzsa Sárossy, Giulia Ravenni and Lidia Benedini

Renewable Energy, 2024, vol. 225, issue C

Abstract: Residual biochar has the potential to replace commercial carbons even in highly specialised applications, presuming further advances in the engineered biochar production. Optimising biomass conversion requires dynamic feedback on the resultant char porosity, but investigation of pore size distribution (PSD) in pyrogenic carbons is challenging due to their extremely ultramicroporous nature. The most common probe molecule used in gas adsorption methods, N2, is often unable to access the narrowest pores, while CO2 can analyse only pores <10 Å.

Keywords: Pore size distribution; Biochar; Micropores; Gasification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124003586
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003586

DOI: 10.1016/j.renene.2024.120293

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003586