Multi-objective prediction and optimization of performance of three-layer latent heat storage unit based on intermittent charging and discharging strategies
Chenyu Zhang,
Zhenjun Ma,
Zhiguo Qu and
Hongtao Xu
Renewable Energy, 2024, vol. 225, issue C
Abstract:
An intermittent heat charging and discharging strategy is proposed for on-demand thermal utilization in a three-layer latent heat storage unit filled with nanoparticle-enhanced phase change materials. To optimize the utilization ratio of phase change materials, and the stored and released thermal exergy amounts, a multi-objective prediction and optimization methodology combining orthogonal experimental design, range and variance analyses, multi-nonlinear regression models, and non-dominated sorting genetic algorithm-II is introduced while considering the variables of nanoparticle concentration, heat transfer fluid velocity, and intermittent time interval. Results show that the time interval presents the most significant influence. Multi-nonlinear regression models for the above three variables are established with determination factors of 0.9871, 0.9625, and 0.9253, respectively. The ultimate optimal results are 0.8, 57094.03 J, and 43066.73 J, achieved at the three variables of 44.37 min, 0.38 m s−1 and 8.99%, respectively. The maximum verification error of 5.11% indicates the reliability of this methodology. The methodology aims to enhance the overall performance of the three-layer latent heat storage system by mitigating the constraints associated with single-performance optimization.
Keywords: Latent heat storage; Orthogonal experimental design; Analysis of variance; Multi-nonlinear regression; Non-dominated sorting genetic algorithm-II (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400394X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:225:y:2024:i:c:s096014812400394x
DOI: 10.1016/j.renene.2024.120329
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().