EconPapers    
Economics at your fingertips  
 

An experimental study of the thrust and power produced by a 1/20th scale tidal turbine utilising blade winglets

Rodolfo Olvera-Trejo, Luke Myers, Luke Blunden and AbuBakr S. Bahaj

Renewable Energy, 2024, vol. 226, issue C

Abstract: Winglets have been employed in the aviation industry to reduce vortices generated at aircraft wings, decreasing drag, and hence increasing fuel economy. For rotating applications previous experimental and numerical studies addressed the application for wind turbines and suggested winglets facing backwards on the suction side of a blade could increase the power capture. This paper presents experimental work using a scale 3-bladed horizontal axis tidal turbine. An oil-based paint flow visualisation coupled to blade thrust and torque measurements helped to identify the mechanism behind the phenomenon affecting the performance of winglets facing the suction side of a turbine blade. The results show that on average a winglet facing downstream decreases the power coefficient 1–2% and increases the thrust coefficient up to 6% for tip speed ratios 5.0–7.0. On the other hand, a symmetrically mirrored winglet facing upstream increased the power coefficient by 1–2%, and the thrust coefficient by 3–4%. Winglets have the potential to provide a meaningful increase to power capture at minimal additional capital cost without increasing rotor diameters. Further work to optimize pressure‐side winglets should be conducted.

Keywords: Experimental; Flow visualisation; Marine energy; Tidal turbine; Winglets (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124004786
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004786

DOI: 10.1016/j.renene.2024.120413

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004786