High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar
Xiaofeng Gu,
Xiaomin Yan,
Mingyang Zhou,
Gaochang Zou,
Zidai Fan and
Jiang Liu
Renewable Energy, 2024, vol. 226, issue C
Abstract:
For the first time, biochar derived from a renewable resource, cotton stalk, is used as the feedstock of direct carbon solid oxides fuel cells (DC-SOFCs) for electricity and gas cogeneration. It turns out that the cotton stalk biochar has plenty of naturally grown K and Ca, which are active catalysts for the reverse Boudouard reaction in DC-SOFCs. This natural advantage of the cotton stalk biochar enables an extremely high power density of an anode-supported DC-SOFC at 850 °C, 0.9 W cm−2, which is the highest among those of the reported DC-SOFCs. Meanwhile, high concentration of CO gas, which is an important feedstock for chemical industry, is obtained from the DC-SOFCs. The energy conversion efficiency of the electricity-gas cogeneration of DC-SOFCs reaches over 70%. A novel method, using compressed char, is proposed and carried out for continuous supply of cotton stalk char to a DC-SOFC. The present work has demonstrated the feasibility and advantages of cogenerating electricity and gas through DC-SOFCs with biochar derived from cotton stalk as the feedstock.
Keywords: Direct carbon solid oxide fuel cell; Biochar; Cotton stalk; Electricity-gas cogeneration; Continuous supply; Natural catalyst (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124005366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005366
DOI: 10.1016/j.renene.2024.120471
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().