EconPapers    
Economics at your fingertips  
 

High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar

Xiaofeng Gu, Xiaomin Yan, Mingyang Zhou, Gaochang Zou, Zidai Fan and Jiang Liu

Renewable Energy, 2024, vol. 226, issue C

Abstract: For the first time, biochar derived from a renewable resource, cotton stalk, is used as the feedstock of direct carbon solid oxides fuel cells (DC-SOFCs) for electricity and gas cogeneration. It turns out that the cotton stalk biochar has plenty of naturally grown K and Ca, which are active catalysts for the reverse Boudouard reaction in DC-SOFCs. This natural advantage of the cotton stalk biochar enables an extremely high power density of an anode-supported DC-SOFC at 850 °C, 0.9 W cm−2, which is the highest among those of the reported DC-SOFCs. Meanwhile, high concentration of CO gas, which is an important feedstock for chemical industry, is obtained from the DC-SOFCs. The energy conversion efficiency of the electricity-gas cogeneration of DC-SOFCs reaches over 70%. A novel method, using compressed char, is proposed and carried out for continuous supply of cotton stalk char to a DC-SOFC. The present work has demonstrated the feasibility and advantages of cogenerating electricity and gas through DC-SOFCs with biochar derived from cotton stalk as the feedstock.

Keywords: Direct carbon solid oxide fuel cell; Biochar; Cotton stalk; Electricity-gas cogeneration; Continuous supply; Natural catalyst (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124005366
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005366

DOI: 10.1016/j.renene.2024.120471

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005366