Techno-exergy-economic assessment of humidification-dehumidification/reverse osmosis hybrid desalination system integrated with concentrated photovoltaic/thermal
Mark M. Fares,
Xing Ju,
E. Elgendy,
M. Fatouh,
Heng Zhang,
Chao Xu and
Mostafa M. Abd El-Samie
Renewable Energy, 2024, vol. 227, issue C
Abstract:
Desalination is a process used to generate water for human consumption, irrigation, or industrial purposes. Assessment of desalination plants is crucial for freshwater productivity, energy consumption, exergy destruction, and economic feasibility calculations. Therefore, the study aims to conduct a technical, exergy, and economic analysis of a concentrated photovoltaic/thermal hybrid humidification-dehumidification reverse osmosis desalination system. The photovoltaic/thermal provides the electrical and thermal requirements for the hybrid desalination unit. Theoretical models for each unit are developed and integrated using the Engineering Equation Solver software. The sensitivity of system performance parameters was investigated under different climatic and operation factors. The analysis shows that the system produces 860 L per hour at the lowest specific energy consumption and water cost (3.3 kW-hours per cubic meter and 0.916 United States dollars per cubic meter), respectively, with a cost payback period of only 12 years compared to other green-powered desalination systems. The highest destruction portion of 84.6 % is at photovoltaic/thermal, while the largest cost portion of 68 % is at reverse osmosis. Productivity, energy consumption, and water cost are influenced by feed salinity, while destruction is most affected by solar irradiance. Ambient temperature, wind speed, and cooling fluid flow rate slightly affect the techno-exergy-economics of the system.
Keywords: Solar hybrid desalination; Concentrated photovoltaic/thermal; Humidification dehumidification; Reverse osmosis; Exergy; Economics; Energy recovery (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124005627
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005627
DOI: 10.1016/j.renene.2024.120497
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().