EconPapers    
Economics at your fingertips  
 

Experimental assessment of a solar vortex engine integrated with sensible TES at different collector configurations

Hussain H. Al-Kayiem, Ali M. Tukkee and Yuan K. See

Renewable Energy, 2024, vol. 227, issue C

Abstract: This study presents an experimental investigation of the effect of different solar collector geometrical parameters on the solar vortex engine's (SVE) performance. The first parametric study is concerned with a solar vortex power generation system's diameter, inlet height, and thermal energy storage (TES) extension. The experimental results revealed that extending the TES by 1 m outside the canopy significantly increases thermal efficiency by 62 %. In addition, increasing the diameter of the solar collector from 8.8 m to 10.8 m, with an extra 1 m extended TES area, increased the air temperature rise by 57 %, while the outlet air velocity increased by 32 %. On the other hand, a reduction in the collector inlet height from 0.2 m to 0.15 increased the air temperature rise while decreasing the outlet air velocity and power output potential by mean values of 19 % and 48 %, respectively. The enhancement obtained from the extended area of TES is an important finding, as it increased the air temperature for a larger canopy size without extra cost. Therefore, increasing the absorption area or the TES outside the canopy is recommended. Also, further studies are essential to correlate the inlet height to the system's performance.

Keywords: Solar thermal; Solar updraft; Vortex engine; Solar collector; Vortex generator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124006049
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006049

DOI: 10.1016/j.renene.2024.120539

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006049