A corrosion cracking mechanism-based model with molten salt corrosion damage coupling the effect of chloride impurity and plastic deformation
Heng Li,
Yan He,
Xinyu Yang,
Dewen Zhou,
Xiaowei Wang,
Jianqun Tang and
Jianming Gong
Renewable Energy, 2024, vol. 229, issue C
Abstract:
The corrosion kinetic models, incorporating the effects of chloride impurity and plastic deformation were proposed. Molten salt corrosion (MSC) damage was quantitatively described using the corrosion kinetic and the distance of materials points from the corrosion surface. By employing the elastic-viscoplastic theory with a hyperbolic-sine flow rule and the proposed damage model, a corrosion cracking mechanism-based model was developed and implemented using finite element (FE) analysis method. The corrosion-assisted cracking ahead of crack tips in accordance with the corrosion cracking mechanism was simulated. Furthermore, the predicted corrosion depth, corrosion morphologies, and multi-site corrosion cracking behaviors showed good agreement with the experimental results.
Keywords: Damage model; Corrosion cracking; Corrosion kinetic model; SSRT; Molten salt corrosion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124007535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:229:y:2024:i:c:s0960148124007535
DOI: 10.1016/j.renene.2024.120685
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().