Optimal curvature radius of cylindrical mirrors in linear Fresnel reflectors
Jun Ma,
Fang Liu,
Chao Liu,
Rong-Ji Wang and
Cheng-Long Wang
Renewable Energy, 2024, vol. 229, issue C
Abstract:
The optical performance of linear Fresnel reflectors (LFRs) is heavily influenced by the curvature of their cylindrical mirrors. An innovative approach to calculating the optimal curvature radius of cylindrical mirrors in LFRs is introduced. Firstly, an optimization calculation method is proposed to determine the curvature radius of the cylindrical mirror. Then, a universal computational model for the curvature radius of cylindrical mirrors is established. Finally, a detailed analysis is conducted on the impact of optimizing the cylindrical mirrors on the optical performance of LFRs. Optical simulation results indicate that optimizing the curvature radius of the mirror significantly reduces the lateral drift of reflected rays. Increasing slope error, tracking error, and curvature radius error of the cylindrical mirrors result in decreased optical efficiency gain in the optimized LFR while improving uniformity. Furthermore, a larger transversal incidence angle yields a more pronounced improvement in the optimized gain, demonstrating a substantial enhancement in optical efficiency without compromising uniformity in LFRs. The average optical efficiency gain of the LFR is measured at 7.09 %, with an average uniformity loss of 2.10 % under all the studied conditions.
Keywords: Linear Fresnel reflector; Cylindrical mirror; Universal computational model; Optical efficiency; Uniformity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400778X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:229:y:2024:i:c:s096014812400778x
DOI: 10.1016/j.renene.2024.120710
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().