EconPapers    
Economics at your fingertips  
 

A novel vacuum-photovoltaic glazing integrated thermoelectric cooler/warmer for environmental adaptation: thermal performance modelling

Jianming Yang, Haojie Zhuang, Yuying Liang, Jian Cen, Xianyong Zhang, Li Li, Peng Li and Runlong Qiu

Renewable Energy, 2024, vol. 229, issue C

Abstract: Vacuum-photovoltaic glazing, renowned for exceptional thermal insulation and solar energy utilization, faces limitations in its adaptability to varying seasons. While it effectively reduces heat transmission into indoor spaces during summer, it becomes detrimental during winter. To address this challenge, this study introduces an innovative solution: vacuum-photovoltaic-thermoelectric (VPT) glazing, which integrates vacuum, photovoltaic and thermoelectric cooling/warming technologies. The theoretical models were developed and validated through WINDOW and Fluent simulations. A comparative analysis is conducted considering thermal performance under various environmental parameters. The results demonstrate that VPT glazing exhibits enhanced thermal performance, with interior glass temperature decreased by 3.0–9.6oC in summer while increased by 2.5–6.2oC in winter, accounting for ∼55.0 % reduction in air-conditioning load. Compared to vacuum-photovoltaic glazing, VPT glazing reduces the coupling U-value from 7.88 to 5.87 W m−2 K−1 in summer and increases from −0.31 to 2.61 W m−2 K−1 in winter. The solar heat gain coefficient decreases from 0.37 to 0.30 in summer and increases from 0.24 to 0.29 in winter. These results demonstrate the effectiveness of VPT glazing in adapting to different seasons and achieving better thermal environment performance. This study provides insights into VPT glazing design for environmental adaptation and offers implications for future research and applications in energy-efficient building technologies.

Keywords: Energy-efficient glazing; Photovoltaic glazing; Thermal performance; Thermoelectric; Adaptation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124008012
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008012

DOI: 10.1016/j.renene.2024.120733

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008012