Operation strategy optimization and heat transfer characteristic analysis of photovoltaic/thermal module series connected with flat plate solar collector: System experimental study
Hao Fang,
Ning Zhang,
Guojun Cai,
Haifei Chen,
Jinwei Ma,
Deyi Wu,
Tao Du and
Yunjie Wang
Renewable Energy, 2024, vol. 229, issue C
Abstract:
Flat plate solar collector (FPSC) produces only thermal energy without electricity, whereas the photovoltaic thermal (PV/T) module produces electricity and low-temperature thermal energy. This paper presents a low-cost method to strengthen the functional uniqueness of individual PV/T and FPSC components through connecting a PV/T module in series with the other component. Under various water volume conditions, an experimental test on high mass flow rate was carried out. Results showed that the FPSC produced a better heating contribution and that reverse heat transfer of the PV/T module might be reduced by changing the operation strategy. The water volume is a crucial factor that influences the system's available heating time, a system that operates in the optimal water volume range will produce greater energy savings. Furthermore, the maximum values of the thermal, electrical, exergy, and primary energy-saving efficiency were 51.91 %, 13.52 %, 19.13 %, and 87.20 %, respectively. The optimal water volume distribution range of the system is 160–180 L. With an average annual decrease of 2.96 t in CO2 emissions, the system provides a 4.28-year payback period and saves 5285.71 USD in electricity costs throughout its life cycle. The novel system performs extremely well in terms of energy and cost efficiency.
Keywords: Photovoltaic/thermal; Flat plate solar collector; Heat transfer; Exergy; Performance assessment (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124008383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008383
DOI: 10.1016/j.renene.2024.120770
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().