Distributionally robust optimal dispatching method for integrated energy system with concentrating solar power plant
Haobin Li,
Xinhui Lu,
Kaile Zhou and
Zhen Shao
Renewable Energy, 2024, vol. 229, issue C
Abstract:
Concentrating solar power (CSP) plants have significant potential to complement the growing wind energy in power scheduling. This study examines an integrated energy system (IES) that incorporates a wind turbine (WT), CSP, and combined heat and power (CHP) to promote the utilization of renewable energy (RE), reduce fluctuations caused by uncertainty, and enhance the economic viability of the system. We propose a distributionally robust optimization (DRO) model for IES scheduling that considers the uncertainty of wind power by using an ambiguity set defined by the Wasserstein metric. Before the occurrence of uncertainties, the system determines the initial dispatching scheme based on the forecast data. In the second stage, the system aims to minimize the adjustment cost expectation under the worst distribution of the ambiguity set and adjusts the flexible resources in real time to offset the fluctuations caused by forecasting errors. The proposed DRO model is transformed into a conventional two-stage robust problem using strong dual theory and KKT conditions, and then solved with a modified column-and-constraint generation (C&CG) algorithm. The results of case studies show that the CSP plant enhances the system's flexibility and controllability through thermal energy storage (TES).
Keywords: Concentrating solar power; Integrated energy system; Wasserstein metric; Distributionally robust optimization; Column-and-constraint generation algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124008607
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008607
DOI: 10.1016/j.renene.2024.120792
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().