The use of an axial flux permanent magnet in-wheel direct drive in an electric bicycle
Per Roger Johansen,
Dean Patterson,
O’Keefe, Christopher and
John Swenson
Renewable Energy, 2001, vol. 22, issue 1, 151-157
Abstract:
The research described in this paper concentrates on the development of an electronic converter. Successful completion of this converter provides the final component for the larger electric bicycle project. The controller developed for the bicycle is rated at 400 W and is hard-switched. It uses MOSFETs as power switching devices. There are three Hall effect sensors placed 120 electrical degrees apart from each other in the motor for velocity and position sensing. The torque generated by the machine is controlled by hysteresis band current control. In order for the motor/controller to be commercially viable, particular attention was paid to the costs of the controller. The result, an efficient yet cheap controller. Measurement of efficiency is difficult in high performance power electronic controllers [Patterson DJA very high efficiency controller for an axial flux permanent magnet wheel drive in a solar powered vehicle. 2nd IEEE International Conference on Power Electronics Drives and Energy Systems for Industrial Growth, IEEE PEDES ’98, Perth, 30th November–3rd December, 1998.]. The paper includes discussion of a calorimetric method for measurement.
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148100000513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:22:y:2001:i:1:p:151-157
DOI: 10.1016/S0960-1481(00)00051-3
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().