Field and laboratory studies of the stability of amorphous silicon solar cells and modules
C.p Lund,
K Luczak,
T Pryor,
J.C.l Cornish,
P.j Jennings,
P Knipe and
F Ahjum
Renewable Energy, 2001, vol. 22, issue 1, 287-294
Abstract:
If photovoltaic solar cells and modules are to be used as a major source of power generation it is important to have a good knowledge and understanding of their long-term performance under different climatic and operating conditions. A number of studies of the long-term performance of commercially available photovoltaic modules manufactured using different technologies have now been reported in the literature. These have shown clear differences in the seasonal and long term performance and stability of different solar cell techniques. In addition to general module engineering factors that result in a loss of performance in all modules some types of solar cells, such as those made from thin film amorphous silicon (a-Si:H), also suffer specific losses in performance due to fundamental material changes, such as photodegradation or the Staebler–Wronski effect (SWE). A field evaluation of the long term performance of state-of-the-art crystalline and amorphous silicon photovoltaic modules in Australian conditions is currently being undertaken at Murdoch University. The initial results from this monitoring program are reported. This paper also reports on laboratory and field studies being undertaken on the nature of the Staebler–Wronski effect in amorphous silicon solar cells and how the stability of these cells is affected by different operating conditions. Based on a mechanism for the SWE in a-Si:H solar cells developed as a result of our research we propose a number of possible ways to reduce the Staebler–Wronski effect in a-Si:H solar cells.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148100000458
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:22:y:2001:i:1:p:287-294
DOI: 10.1016/S0960-1481(00)00045-8
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().