Solar drying of sweet pepper and garlic using the tunnel greenhouse drier
M Condorı́,
R Echazú and
L Saravia
Renewable Energy, 2001, vol. 22, issue 4, 447-460
Abstract:
A new low cost design for a forced convection greenhouse drier, the Tunnel Greenhouse Drier, has been built and tested. Its main parts are: a plastic greenhouse cover containing a drying tunnel made with transparent plastic walls; a line of carts with several stacked trays containing the product and moved manually inside the tunnel and an electrical fan that moves the hot air from the greenhouse into the tunnel. The trays receive solar radiation through the transparent walls, increasing the product temperature. Heat losses from the tunnel are low since greenhouse temperatures are higher than ambient temperature. The main advantages of this drier are: (a) an almost continuous production since some carts with dried product come out of the tunnel every day, while the same amount of fresh product is introduced by the other tunnel extreme; (b) lower labor cost since the product handling is partly mechanized; (c) a conventional heater can be easily installed to keep a constant production rate; (d) the energy consumption is lower than in other drier types; (e) the installation can be used as a greenhouse for small production when it is not used as a drier. The prototype was built in the North of Argentina, and red sweet pepper and garlic were used as load. The drier thermal efficiency, considered as a solar collector, was calculated using the measured experimental data, and a linear relation between the drier temperature and the solar radiation was obtained.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148100000987
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:22:y:2001:i:4:p:447-460
DOI: 10.1016/S0960-1481(00)00098-7
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().