Honeycomb-shaped artificial roughness in solar air heaters: CFD-experimental insights into thermo-hydraulic performance
Somar Rajeh Ghanem and
Amit C. Bhosale
Renewable Energy, 2024, vol. 230, issue C
Abstract:
This research paper presents numerical and experimental investigations to examine the effectiveness of a honeycomb pattern as a form of the geometry of artificial roughness in solar air heaters. Utilizing Computational Fluid Dynamics (CFD) through three-dimensional simulations, the study explores how Thermo-Hydraulic Performance Parameter (THPP) is affected by variations in honeycomb geometry. The research examines various parameters, including the angle of attack (Ø), relative roughness pitch (P/e), and relative roughness height (e/D) within the respective ranges of (90°-120°), (8–12), and (0.03–0.05). The system's performance is evaluated across various flow scenarios, covering Reynolds numbers from (3000) to (21,000). Incorporating the honeycomb design into an absorber is observed to improve the heat transfer rates. The system achieves a maximum Nu of (140.65) at (e/D) of 0.04, (P/e) of 10, (Ø) of 120°, and Re of (21,000). The maximum FF of (0.039) was obtained at (e/D) of 0.05, (P/e) of 9, and (Ø) of 120° at a Reynolds number of (6000). The system exhibited a THPP of (1.7) at a Reynolds number of (6000). This Maximum THPP was associated with specific parameters, including (e/D) of 0.04, (P/e) of 10, and (Ø) of 120°.
Keywords: Solar air heater; Artificial roughness; Honeycomb; CFD-experimental analysis; Thermo-hydraulic performance; Nusselt number (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124008978
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008978
DOI: 10.1016/j.renene.2024.120829
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().