Maximizing renewable energy and storage integration in university campuses
Alexandra Catalina Lazaroiu,
Cornel Panait,
George Serițan,
Claudia Laurenta Popescu and
Mariacristina Roscia
Renewable Energy, 2024, vol. 230, issue C
Abstract:
The worldwide demand increase and climate change constraints are leading to integration and maximization of renewable energy sources (RESs) share in the energy production. This represents a key aspect to reduce the pollutant emissions and facilitate the transition to a cleaner future. Many agreements and incentives were discussed and imposed in order to limit the fossil fuel use and thus reducing the pollutant emissions to limit global warming. With this considerations, the renewable energy sources are installed with continuous share increase. To support this implementation and used simultaneously with providing a power reserve for these intermittent power sources, energy storage systems are becoming more and more used and necessary. Simultaneously with these changes, hydrogen is becoming more and more used, being a means by which electricity can be produced without generating greenhouse gas emissions (GGE). A power supply system with multiple sources is presented and its operation is analysed, the system contains photovoltaic panels, wind system, fuel cell, hydrogen generator, electricity and hydrogen storage system to supply the consumption of a student dormitory from a university campus in Romania with prosumer possibilities.
Keywords: Renewable energy sources; University campuses; Multi-sources; Hydrogen; Prosumer (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400939X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:230:y:2024:i:c:s096014812400939x
DOI: 10.1016/j.renene.2024.120871
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().