EconPapers    
Economics at your fingertips  
 

Research on the mechanism of severe unsteadiness of PAT braking condition during the power failure

Chenying Zhang, Wenjie Wang, Giorgio Pavesi, Shouqi Yuan and Ji Pei

Renewable Energy, 2024, vol. 232, issue C

Abstract: The Pump-As-Turbine (PAT) technology has become popular in micro hydropower stations due to its simple installation and cost-effectiveness. Nevertheless, power failures present a substantial risk to the secure and steady functioning of PAT’s braking system. The commercial CFD code (ANSYSCFX) is improved by incorporating a secondary development to model the power-off transition using Fortran accurately. This enhancement allows for real-time iterative calculations of angular momentum equations for mixed-flow PAT at different speeds. Meanwhile, the time–frequency domain analysis is utilized to analyze pressure pulsation signals and the evolution of the internal flow field in mixed-flow PAT. An investigation was conducted to have a deeper understanding of braking circumstances. The results revealed that the main frequency of the pressure pulsation aligns with the blade frequency at various flow rates, and there is a sudden change in pressure amplitude during the braking phase. The impeller experienced the majority of energy losses, with the draft tube being the subsequent area of concern. In addition, a thorough examination and comparison of the changes in the internal flow field during braking were carried out. This analysis revealed a distinct double helix structure within the draft tube, with a slower inner helix and a faster outer helix. Furthermore, it was observed that there is a strong correlation between wall shear stresses and hydraulic losses on the blade surface. This research enhanced understanding of the flow characteristics of mixed-flow PAT can help improve system safety and provide valuable guidance for future optimization efforts.

Keywords: Pump as turbine; Braking conditions; Energy loss; Unsteady flow evolution; Transient characteristics; CFD numerical simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124010875
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010875

DOI: 10.1016/j.renene.2024.121019

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010875