Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices
Jun-Hua Zhu,
Jie-Sheng Wang,
Yue Zheng,
Xing-Yue Zhang,
Xun Liu,
Xiao-Tian Wang and
Song-Bo Zhang
Renewable Energy, 2024, vol. 232, issue C
Abstract:
As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA–II–CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases.
Keywords: Optimal power flow; Wind energy; FACTS; Multi-objective constrained optimization; Coevolution (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124011558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011558
DOI: 10.1016/j.renene.2024.121087
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().