Techno-economic assessment and transient modeling of a solar-based multi-generation system for sustainable/clean coastal urban development
Xiao Zhou,
Chunliang Ding,
Azher M. Abed,
Sherzod Abdullaev,
Sayed Fayaz Ahmad,
Yasser Fouad,
Mahidzal Dahari and
Ibrahim Mahariq
Renewable Energy, 2024, vol. 233, issue C
Abstract:
To ensure the health of vulnerable coastal ecosystems, a transition to sustainable energy solutions is essential. Environmentally friendly systems powered by renewable sources offer not only a reduction in pollution but also the adaptability needed for a flexible and resilient energy future. This study proposes and comprehensively evaluates an integrated solar-based system designed to meet the daily needs of coastal cities. The proposed system incorporates key components such as dual-loop power cycles, parabolic trough solar collectors, liquefied natural gas (LNG) regasification, reverse osmosis, and proton exchange membrane electrolysis. To optimize energy utilization, the inclusion of a thermoelectric generator (TEG) is considered, harnessing the thermal gradient among the LNG stream and the power cycle fluid. We conduct transient modeling, incorporating comprehensive scenarios that account for both thermal and economic aspects. The performance evaluation of the system focuses specifically on coastal regions, with San Francisco serving as a case study. The dynamic simulation results demonstrate the capability of the integrated system in fulfilling the urban needs for one year, delivering 1,134,207 cubic meters of potable water and generating 11,306 MWh of electricity. Financial analysis reveals that the solar unit accounts for over 46 % of the total cost, with an hourly cost rate of $69.61. The levelized cost of electricity is predicted at 4.61 cents/kWh, while the levelized cost of water is calculated at 30.54 cents/m3. These findings provide valuable insights into the cost-effectiveness and competitive advantage of the system in terms of energy and water production.
Keywords: Thermal design; Sensitivity analysis; Hydrogen production; Thermo-economic analysis; Thermoelectric generator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812401187X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:233:y:2024:i:c:s096014812401187x
DOI: 10.1016/j.renene.2024.121119
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().