Synergistic activation of hydroxyl groups by hierarchical acid sites and deep eutectic solvents for the dehydration of fructose to 5-hydroxymethylfurfural under mild temperature
Xingyilong Zhang,
Houfang Lu,
Kejing Wu,
Yingying Liu,
Jian Wu,
Yingming Zhu and
Bin Liang
Renewable Energy, 2024, vol. 233, issue C
Abstract:
The activation of C–OH bond shows great importance for fructose dehydration to produce 5-hydroxymethylfurfural (HMF). In the deep eutectic solvent (DES), the synergistic improvement of surface sulfonic acid groups on hierarchical porous carbon solid acids (HPCSA) and choline chloride (ChCl) on activation of fructose hydroxyl groups was studied to achieve high catalytic performance under mild conditions. The results show a high yield of 90.7 % for HMF at relatively mild temperature of 70 °C. The polarizing effect of ChCl on fructose hydroxyl groups enhances the interaction energy between fructose and sulfonic acid groups on carbon surface, resulting in elongated C–OH bond of fructose from 1.412 Å to 1.456 Å. The hierarchical pore structure can improve the accessibility to acid active sites and increase the quantity of surface sulfonic acid groups by enlarging specific surface areas. A reaction mechanism considering the synergistic effect of various components in DES is proposed to explain the promotion of fructose dehydration under mild conditions. This work provides an effective solution for utilizing biomass to produce renewable energy.
Keywords: Hierarchical porous solid acids; Deep eutectic solvents; Fructose dehydration; Hydroxyl group activation; Synergistic catalysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124012126
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012126
DOI: 10.1016/j.renene.2024.121144
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().