EconPapers    
Economics at your fingertips  
 

Optimal array layout design of wave energy converter via honey badger algorithm

Bo Yang, Yimin Zhou, Bingqiang Liu, Miwei Li, Jinhang Duan, Pulin Cao, Chao Zheng, Lin Jiang and Yiyan Sang

Renewable Energy, 2024, vol. 234, issue C

Abstract: Oceans cover approximately 71 % of the Earth's surface, wave energy presents a promising avenue for development. Hence, wave energy has garnered significant attention. Wave energy converters (WECs) are crucial technologies that transform wave energy into electrical power. The power output of wave farms largely depends on the complex hydrodynamic interactions among WECs, which are influenced by buoy positions and wave environment. Therefore, optimizing the buoy positions is a key strategy for enhancing the overall power output of WEC arrays. This paper adopts a novel meta-heuristic algorithm (MhA) named honey badger algorithm (HBA), designed to fully explore and exploit the constructive interactions among three-tether fully submerged WECs. To validate the effectiveness of HBA in optimizing WEC layouts, four different wave farm configurations with 2, 4, 10, and 20 buoys are analyzed. A comprehensive comparison is conducted using five typical MhAs against HBA. Experimental results demonstrate that HBA achieves the highest total power output with remarkable stability compared to alternative methods. Specifically, the q-factor values for the four wave farms are improved to 1.039, 1.027, 1.056, and 0.969, respectively. Additionally, the total power output of the 10-buoy and 20-buoy wave farms can be increased by up to 7.19 % and 4.4 %, respectively.

Keywords: Ocean energy; Wave energy converter; Array layout optimization; Honey badger algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124012503
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012503

DOI: 10.1016/j.renene.2024.121182

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012503