Assessing the effects of horizontal loads on the ultimate vertical bearing capacity of energy piles: A comparative numerical and analytical study
Bahareh Heidari,
Siamak Yoosefi and
Amir Akbari Garakani
Renewable Energy, 2024, vol. 234, issue C
Abstract:
Previous studies have not extensively explored the collective impact of lateral, axial, and thermal loading on the ultimate vertical bearing capacity of energy piles, qu. This study investigates qu values for energy piles in dry sandy and clayey soils under varying lateral loads and temperature conditions using numerical and analytical solutions, considering temperature-dependent variables. The numerical results were validated against experimental data. The analytical solution aligns well with numerical analyses, though it yields slightly higher qu values in sandy soil. Both numerical and analytical solutions show that cooling and heating can respectively increase and decrease qu under corresponding conditions. Numerical simulations indicate that in clay, lateral load enhances qu, with increases ranging from 8 % to 20 % across different thermomechanical conditions. In sand, the effect of lateral load depends on thermal conditions, increasing by 2 %–5 % during cooling and decreasing by 3 %–5 % during heating. The analytical solution showed that increasing lateral load would increase qu in sand by 0.5 %–2 % and in clay by 1 %–5 %, with a more significant increase in clay. Analytical and numerical parametric studies also revealed the higher influence of soil cohesion and pile diameter on qu values under different thermomechanical conditions.
Keywords: Energy pile; Numerical modeling; Analytical solution; Ultimate vertical bearing capacity; Lateral loading (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124012722
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012722
DOI: 10.1016/j.renene.2024.121204
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().