EconPapers    
Economics at your fingertips  
 

Effect of furnace temperature and oxygen concentration on combustion and CO/NO emission characteristics of sewage sludge

Zhanshi Ni, Yaokun Zhang, Xiang Liu, Hao Shi, Yurou Yao, Junjian Tian, Peng Hu, Liqun He, Qizhao Lin and Kesheng Meng

Renewable Energy, 2024, vol. 234, issue C

Abstract: Addressing the growing energy crisis, the development and utilization of solid waste have become a critical research areas. Sewage sludge, rich in organic matter, can serve as an alternative fuel to coal. This study employs a thermogravimetric analyzer to investigate the combustion characteristics of sewage sludge at heating rates of 10, 20, and 40 °C/min. Additionally, a horizontal tube furnace is utilized to analyze the CO and NO emission characteristics during sewage sludge combustion at varying oxygen concentrations and temperatures. Results indicate that at a constant gas velocity, the primary factor influencing combustion characteristics and CO/NO emissions is the composition difference. Higher furnace temperatures lead to lower CO generation and increased combustion efficiency. The conversion of coke-N to NO rises with increasing temperature. Moreover, higher furnace temperatures decrease the conversion of fuel-N to NO. Increasing oxygen concentration reduces the ignition concentration limit of sewage sludge. The lowest NOx emissions were recorded at an oxygen concentration of 21 vol%. This study provides essential data for reducing coal consumption and enhancing the safe and efficient treatment of sewage sludge.

Keywords: Sewage sludge; Combustion characteristics; Furnace temperature; Oxygen concentration; Pollutant emission (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812401293X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:234:y:2024:i:c:s096014812401293x

DOI: 10.1016/j.renene.2024.121225

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:234:y:2024:i:c:s096014812401293x