EconPapers    
Economics at your fingertips  
 

Feasibility of realizing photothermal, photovoltaic, and radiative cooling with a flexible structure

Maoquan Huang, Xingjie Ren, G.H. Tang, Qie Sun and Mu Du

Renewable Energy, 2024, vol. 236, issue C

Abstract: The escalating energy demands and the imperative of environmental conservation necessitate advanced sustainable energy solutions. This study introduces a novel nanofluid spectrum-splitting photovoltaic/thermal system integrated with radiative cooling (RC) technology, termed NSS-RC-PV/T. This system optimizes solar spectrum utilization, enhances thermal management, and significantly improves the efficiency and flexibility of heat, electricity, and cooling outputs. Employing a reversible PV-Ag panel, the system adapts between PV/T and RC modes based on energy demands. A comprehensive mathematical model is established to evaluate its performance under realistic environmental conditions across China. Results indicate the maximum energy output of the system is 6438 MJ/m2, which is a 33.4% increase in annual energy output compared to the conventional PV/T system. The dynamic power response model also shows an increase of 5.8% (266 MJ/m2) compared to the daylight response model. This research underscores the potential of NSS-RC-PV/T systems in advancing renewable energy technologies and meeting modern energy needs.

Keywords: Photovoltaic/thermal; Radiative cooling; Plasmonic nanofluids (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124014320
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014320

DOI: 10.1016/j.renene.2024.121364

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014320