EconPapers    
Economics at your fingertips  
 

Insights into the role of A/B-site substitution in chemical looping gasification of cotton stalk for enhanced syngas production over La-Co-O based perovskite oxygen carriers

Jingchun Yan, Junjie Lai, Yongbo Yan, Weidong Liu, Laihong Shen and Li Yang

Renewable Energy, 2024, vol. 236, issue C

Abstract: Biomass chemical looping gasification (BCLG) is an emerging technology for efficient and clean utilization of cotton stalk (CS) to produce high-quality syngas. Among various oxygen carriers, perovskite oxides are holding an ever-increasing position in BCLG due to their unique structural properties and compositional flexibilities. However, research on perovskite-type oxygen carriers mostly focused on Fe-based oxides, and there is little in-depth investigation of Co-based perovskite and the role of A/B site substitution in the BCLG process. Herein, the LaCoO3 perovskite is selected as the basic oxygen carrier, and Sr, Fe are further doped on the A/B-site to form LaCo1-xFexO3 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) and La1-ySryCoO3 (y = 0, 0.2, 0.4, 0.6, 0.8) series. Effects of perovskite type, gasification temperature, steam volume fraction and oxygen carrier mass fraction of the BCLG performance are investigated. Results indicate that La0.6Sr0.4CoO3 and LaCo0.2Fe0.8O3 exhibit enhanced syngas production with the maximum of 1.304 m3/kg and 1.188 m3/kg, respectively, and outstanding cyclic stability at optimal reaction conditions. Further characterizations including H2-TPR, XPS and EPR analysis reveal that Sr substitution facilitate the formation of oxygen vacancies and adsorbed oxygen species, while Fe doping leads to the increasing concentration of oxygen vacancies and surface lattice oxygen species. Combined with the experimental and characterization results, it is deduced that the oxygen vacancies which promote the adsorption of reactants and accelerate the migration of bulk lattice oxygen, play the key role in the enhanced BCLG performance.

Keywords: Biomass chemical looping gasification; Perovskite-type oxygen carrier; A/B-site substitution; Oxygen vacancy; Syngas production (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124014964
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014964

DOI: 10.1016/j.renene.2024.121428

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014964