Pyrolysis kinetics and thermodynamic analysis of bamboo, bagasse, and rice husk bio-chars: Implications for sustainable energy
Pratik Chaudhuri,
Rohan Pande and
Nikhil A. Baraiya
Renewable Energy, 2024, vol. 237, issue PA
Abstract:
This study focuses on the kinetic and thermodynamic analysis of bio-chars derived from popular and abundantly available biomasses like bamboo, bagasse, and rice husk. These bio-chars obtained by pyrolysis aim to be utilised without any refinement for combustion purposes minimising greenhouse gases and contributing towards sustainable development goals. However, understanding the kinetic and thermodynamic properties of bio-char is essential for optimizing its combustion performance. The results indicate a marked improvement in fixed carbon content and calorific value compared to the original biomass, alongside a reduction in average activation energy. For example, bamboo bio-char exhibited an increase in fixed carbon content from 16.02 % to 68.28 %, a rise in higher heating value from 16.84 to 25.48 MJ/kg, and a decrease in average activation energy from 183.63 to 121.22 kJ/mol in comparision to bamboo biomass. Additionally, the study introduces a novel approach that combines model-free and model-fitting techniques to simultaneously determine the reaction mechanism and pre-exponential factor such that the need for separate validation ends. This novel methodology offers a state-of-the-art framework for assessing the bioenergy potential of various biomasses, applicable for studies and comparisons on a global scale.
Keywords: Bioenergy; Bio-char; Thermogravimetric analysis; Pyrolysis kinetics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124017063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124017063
DOI: 10.1016/j.renene.2024.121638
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().